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Abstract. Accurately identifying photovoltaic (PV) module failures is critical
to ensuring their reliability and efficiency. Deep Neural Networks (DNNs) have
emerged as a highly effective tool for this purpose, particularly when utilizing
infrared images. However, it is important to note that optimal DNN performance
commonly requires a substantial amount of high-quality and annotated data.
Data augmentation techniques have been developed to address this challenge.
These techniques involve applying transformations such as rotation and flipping
to augment the size of a dataset. However, it is essential to acknowledge
that using data augmentation methods carries the inherent risk of introducing
biases or inaccuracies into the augmented data. In this study, we conducted a
comparative analysis of four data augmentation methods. Our primary objective
was to assess the impact of data augmentation on DNN performance through
the k-fold cross-validation technique in the PV module failure classification task.
Furthermore, we have also tested the generalization capabilities of five different
DNN models when utilizing data augmentation methods. This analysis provides
valuable insight into the most effective data augmentation methods for enhancing
DNN performance and ensuring the accuracy of PV module failure classification.
This analysis highlights that the way one uses data augmentation is critical to
achieving realistic and reliable results and, hence, reliable models.

Keywords: Infrared images, data augmentation, CNN, classification,
photovoltaic modules.
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1 Introduction

Photovoltaic (PV) systems are the primary technology utilized to harness solar energy
and, in recent years, have gained tremendous popularity as a renewable energy source.
The installed PV capacity exhibits an average annual growth rate of 15%. In the
past decade, there has been a significant cost reduction of over 40% in installing PV
plants. This reduction has resulted in the emergence of more plants and a rise in their
size. However, PV plants, while a great source of renewable energy, require regular
maintenance and inspections, which can be inconvenient.

The scientific community has explored various options and technologies to decrease
the amount of time needed for inspections and enhance their accuracy. One innovative
technique that has emerged is using unmanned aerial vehicles (UAVs) equipped with
cameras capable of capturing images in both visible and infrared spectrums, also
known as thermal images. Aerial inspections performed through this method have
been particularly useful for inspecting PV installations. In this sense, thermographic
inspection, which involves using infrared imaging to identify defective modules in PV
installations, has gained popularity as a reliable and efficient tool [5].

Thermography allows the identification of temperature distributions in PV modules,
enabling the detection of non-uniform distributions. Based on this temperature
distribution, it is possible to correlate different problems. Nevertheless, a careful image
analysis over a large set of infrared images is needed to perform this identification
task. Then, to address this challenge, intelligent and/or autonomous systems have
been proposed as possible solutions. These include statistical analysis and, more
recently, deep learning-based approaches such as Deep Neural Networks in particular
Convolutional Neural Networks (CNN) [7, 9, 10, 12].

Despite the large number of CNN models and their different complexities, reviewing
the impact of the information used to train and test these networks is necessary. One
of the initial strategies for identifying defective modules involved statistical studies of
temperatures in infrared images was demonstrated by Kim et al. [6]. In their work,
local and global standard deviations were considered to define defective modules.
Additionally, Dotenco et al. [2] proposed a statistical analysis of pixel intensities.
Carletti et al. [1] introduced another method, employing a water-filling algorithm for
hotspot detection. While these methods showcase innovative approaches, traditional
techniques face significant challenges in real-world scenarios.

These methods often lack robustness, struggle to generalize to new, unseen data, and
encounter difficulties adapting to variations in image conditions, such as distortions,
occlusions, or other unpredictable factors. Deep learning, specifically CNNs, has been
used as an alternative solution to the PV module image classification problem. The
CNNs have demonstrated significant advantages in handling diverse, large-scale, and
complex image classification tasks. In some cases, custom convolutional neural models
have been proposed [4, 14, 16]. Also, adaptations and transfer learning to re-train
well-known models such as VGG-16 [13], MobileNet [3], AlexNet [7], ResNet [9]
and DenseNet [12] have been employed. Datasets, some of which are public, are used
for training these models. However, one difficulty with current public databases is their
limited size and the imbalance in the number of images per class.
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Fig. 1. Example of an image of each class in Millendorf dataset [11]. a) Cell. b) Cell multi.
c) Cracked. d) Hotspot. e) Hotspot multi. f) Diode. g) Diode multi. h) Offline. i) Shadowing.
j) Soiling. k) Vegetation.

One strategy commonly employed to address these problems is the technique known
as data augmentation. Data augmentation consists of applying modifications to existing
data, thus creating new instances (synthetic ones) with variations on the original data. In
the case of images, geometric transformations such as flipping and rotation operations
and brightness modifications have been implemented to generate synthetic images, as
reported in the work of Korkmaz [7].
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Fig. 2. Distribution of images per class in the dataset [11].

Other works, such as the one presented by Pamungkas et al. [12], use Generative
Adversarial Network (GAN) combined with geometric transformations for image
generation. However, this combined strategy was outperformed when only geometric
data augmentation was used. In this work, we have conducted a comparative analysis
of the data augmentation methodologies that some recent works, that address the
identification of failures in PV systems, have implemented.

Specifically, we have evaluated the data augmentation methodology of Alves [4],
Korkmaz [7], Le [9], and Pamungkas [12], which, in addition, are using the database
reported by Millendorf et al. [11]. The analysis performed here primarily aims to
assess the impact of data augmentation on these works, since they have reported
very different results depending on data augmentation strategies besides the model
employed. To ensure a fair comparison, we implemented some of the most recognized
and widely accessible deep neural network architectures, modifying only how data
augmentation was implemented.

The contribution of this analysis is the evaluation of the effectiveness of different
data augmentation techniques to improve the performance of deep learning models in
the detection of faults in photovoltaic systems. The remainder of this manuscript is
organized as follows. In Section 2 the proposed methodology for comparing training
and data augmentation methodologies found in the literature is presented. Section 3
describes the obtained results and their analysis. Finally, in Section 4, the conclusions
and future work are presented.

2 Methodology

To assess the impact of data augmentation methodologies, we propose using transfer
learning for five well-known deep learning models in the literature: VGG16, ResNet50,
MobileNetV2, DenseNet121, and EfficientNetB0. Using widely recognized models,
which have proven effective in various classification tasks and can be easily reproduced,
the aim is to establish a solid basis for evaluating the proposed methodology. These
classification models come with pre-trained weights on the ImageNet dataset [8].

Additionally, the classification models undergo a modification in the last output
layer to classify the number of classes of failures present in the thermal image dataset.
The employed dataset in this analysis comprises 10, 000 thermal aerial images of PV
modules, each measuring 24 × 40 pixels, with eleven different failure classes. These
grayscale images were acquired during various infrared aerial inspections and manually
classified by Millendor et al. [11].
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Fig. 3. Proposed methodology to address four cases of data augmentation. Here, k-fold
cross-validation is implemented during the training stage of the CNN models. The
best-performing model from the k-fold cross-validation is used to evaluate the models.

Depending on the type of failure, each PV module image shows a different thermal
distribution, where areas with higher temperatures are highlighted in bright colors,
while areas with lower temperatures are highlighted in dark colors. An image for
each class is shown in Fig. 1. Due to varying fault frequencies, the dataset exhibits
an imbalance in the number of images per class. The classes are Cell, Cell multi,
Cracked, Hotspot, Hotspot multi, Diode, Diode multi, Offline, Shadowing, Soiling
and Vegetation. Cell failure has the highest incidence at 18.8%, while multiple diode
bypass, soiling, hotspot, and multiple hotspots represent the lowest incidence classes at
1.8%, 2%, 2.5%, and 2.5%, respectively.

The distribution of images in each failure class is depicted in Fig. 2. Data
augmentation is employed to address imbalance issues. Based on current literature,
we have proposed a methodology that incorporates four distinct data treatments:
i) No data augmentation, ii) fully augmented data set, iii) data augmentation and
post-augmentation class balance, and iv) data augmentation only in the training set.
Furthermore, a k-fold cross-validation with k = 10 is implemented during the training
model stage in all cases.

The k-fold cross-validation involves partitioning the training subset into k distinct
folds, where one fold serves as the validation dataset while the remaining folds
collectively form the training set of the model. This process is iterated k times, with
each fold acting as the validation subset. Using k-fold cross-validation provides a robust
metric for assessing the model’s generalization capabilities.

The whole methodology is illustrated in Fig. 3, where each color line represents
each previously described case of study. In the first case, the dataset is used without
augmentation, ignoring the imbalance in the number of images per class, as used in the
works by Alves-Fonseca [4], Li [10], Le [9] and Pamungkas [12]. Then, the dataset is
split into two subsets: 80% for training and 20% for testing.

In the second case, data augmentation is applied, including flipping, rotation, and
brightness operations to increase the number of samples as described in the work of
Pamunkgas [12]. Brightness operations involve decreasing and increasing each pixel
intensity value by ±30. Subsequently, flipping and rotation operations are applied to
original and brightness-modified images. This augmentation generates 11 additional
images per original image. Fig. 4 shows representative examples of the generated
synthetic images. The resulting set, which comprises 120,000 images with the original
class imbalance, is split into two subsets: 80% for training and 20% for testing.
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Fig. 4. Example of data augmentation including geometric and brightness operations. a) Original
image. b) Vertical flip. c) Horizontal flip. d) 180 degrees rotation. e) Brightness increase. f-h)
Vertical, horizontal, and 180 degrees rotation with brightness increase. i) Decrease of brightness.
j-l) Vertical, horizontal and 180 degrees rotation with a decrease in brightness.

Similar to the second case, data augmentation is carried out using the same
geometric operations and brightness modifications for the third case. However, unlike
case two, a data balance is performed, ensuring each class has an equal number of
elements. Uniformly random image selection of the augmented dataset is performed
to balance the classes. Each class contains the same number of images as the smallest
class in the augmented dataset. Then, 1,100 images from each class were uniformly
randomly chosen from a final set of 120,000 images.

These images are divided into training and test subsets following an 80-20
proportion. In the fourth scenario, data augmentation is exclusively implemented on the
training subset. Then, a training set of 96,000 images is obtained. It is worth mentioning
that for all cases, the best-performing model from the k-fold cross-validation is tested
on the dedicated test subset. The overall performance of the models has been evaluated
using widely known metrics such as Accuracy, Precision, Recall, and F1-score [15].

3 Results

In this section, the results obtained from the proposed methodology are presented. A
desktop computer with Core i9 processor, NVIDIA GPU GeForce GTX 3090 with 24
GB of VRAM, and 64 GB of RAM was used to extract features and train the models.
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Fig. 5. Comparison of the training performance, after the 10-fold cross-validation
implementation, of each of the four cases using the five deep neural networks models.

The implementation was carried out in Python 3.8 and PyTorch framework 1.13.1.
In all four cases, the AlexNet model was trained using the Adam optimizer on 25 epochs
with a learning rate of 0.0001, a batch size of 32, and categorical cross-entropy as a loss
function. For each of the models used in the fine-tuning process, a linear layer of the
same size as the last layer of the original network was added, specifically adjusted to
match the number of classes required in the classification task.

Fig. 5 provides a graphical representation of the accuracy distribution obtained
by each model (VGG16, ResNet50, MobileNetV2, DenseNet121, and EfficientNetB0)
in the four different data augmentation cases. The data presented in Fig. 5 indicates
an improvement in the performance of all deep neural network models when data
augmentation is utilized (cases 2, 3, and 4) compared to the scenario where no data
augmentation is applied (Case 1). However, it is worth highlighting that the accuracy
reaches only about 75% when data augmentation and post-augmentation class balance
are employed (Case 3). This may be attributed to the fact that data sampling is
performed after augmentation, which may result in an inadequate representation of each
class during the model training phase.

It is crucial to mention that this issue is observable regardless of the model type.
Furthermore, it can be observed that the measure of central tendency is higher for Cases
2 and 4 while also presenting a comparatively lower measure of dispersion. The average
accuracy values and their corresponding standard deviations obtained through 10-fold
cross-validation for each model in four training cases are shown in Table 1. It stands
out that DenseNet121 achieved the highest average accuracy, reaching a remarkable
94.4% in Case 4. Also, it is observed that EfficientNetB0 exhibited the lowest standard
deviation in Case 4.

In Case 1, the performance is less than 70% in accuracy, so it can be suggested
that the imbalance and the small number of images affect the generalization ability.
Since the standard deviation is greater than 1 in most cases, it can be concluded that
there is significant variability depending on the fold employed. By employing data
augmentation in Case 2, an increase of almost 28% in average accuracy is observed,
while maintaining a standard deviation of less than 0.24. It is crucial to note that
including images to balance the classes (Case 3) leads to a further increase in the
average accuracy, as evidenced by comparing Case 1 with Case 3.
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Table 1. Mean accuracy (µA) and standard deviation (σA) in the training of k-folds, presented as
percentages.

µA σA

Model Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4

DenseNet121 66.62 94.39 70.83 94.4 1.36 0.15 0.56 0.28

EfficientNetB0 61.05 93.95 68.82 93.76 0.76 0.15 0.53 0.14

MobileNetV2 62.78 90.06 64.01 89.71 1.38 0.13 0.7 0.32

ResNet50 63.28 92.37 69.44 92.45 1.72 0.23 0.81 0.33

VGG16 68.3 92.75 72.49 92.67 1.42 0.23 0.78 0.32

Table 2. Classification report showing the percentage performance of the best models on the test
subset across four different cases.

Model
Case 1 Case 2

Acc P R F1 # Acc P R F1 #

VGG16 69.40 69.03 63.89 65.78 2,000 95.41 94.74 95.02 94.86 13,000

ResNet50 60.25 63.13 51.31 52.69 2,000 97.38 97.08 97.47 97.25 13,000

DenseNet121 70.35 67.77 64.25 65.40 2,000 97.72 97.73 97.81 97.76 13,000

MobileNetV2 67.05 63.18 59.85 60.84 2,000 94.50 94.60 94.68 94.61 13,000

EficientNetB0 67.15 65.53 63.09 63.76 2,000 98.52 98.78 98.54 98.52 13,000

Model
Case 3 Case 4

Acc P R F1 # Acc P R F1 #

VGG16 76.58 76.09 76.58 76.58 4,620 73.90 69.51 67.86 68.31 2,000

ResNet50 74.65 75.22 74.65 74.60 4,620 73.30 72.33 69.28 69.89 2,000

DenseNet121 75.84 75.31 75.84 75.35 4,620 73.25 73.75 70.06 70.82 2,000

MobileNetV2 66.34 66.25 66.34 66.11 4,620 73.55 71.96 70.46 70.79 2,000

EficientNetB0 74.31 74.61 74.31 73.53 4,620 74.55 71.75 69.94 70.17 2,000

The differences between Case 2 and Case 4 do not seem to be significant, at least
in terms of performance during training.Through cross-validation, the model with the
highest accuracy was identified. This model was tested using the test subset, and the
results of the best models are detailed in Table 2. In Case 1, the top models were
VGG-16 and DenseNet, achieving accuracy close to 70%, with values above 64%
in the precision, recall, and F1 metrics. In Case 2, the most outstanding model was
EfficientNetB0, achieving values above 98% in all metrics. For the third case, VGG-16
proved to be the best model with a performance of 76% in all metrics.

DenseNet121 emerged as the best model for the fourth case, presenting two of the
highest values in the accuracy and F1-score metrics, with 73% and 70.82%, respectively.
The notably high values are highlighted in bold in Table 2. It can be seen that, for Case
2, all metrics exceed 94%, while for the other cases, they do not reach the average
value of 77%. This analysis highlights the remarkable differences in the performance
of the models in different training configurations. In cases 1, 2, and 3, no significant
differences are observed between the accuracy values reported during training and those
obtained in the test phase.

42

Luis E. Montañez, Luis M. Valentín-Coronado, Daniela Moctezuma, et al.

Research in Computing Science 153(12), 2024 ISSN 1870-4069



Table 3. Comparison of works employing the dataset reported by Millendorf et al. [11].

Reference Case Model DATe DATr Balance Accuracy

Alves Fonseca 2021 [4] 1 CNN ✗ ✗ ✗ 66.43

Le 2021 [9] 1 Ensamble ✗ ✗ ✗ 85.9

Li 2023 [10] 1 Transformer ✗ ✗ ✗ 88.5

Pamungkas 2023 [12] 1 UDenseNet ✗ ✗ ✗ 65.9

This analysis 1
DenseNet121 ✗ ✗ ✗ 70.35

VGG16 ✗ ✗ ✗ 69.40

Pamungkas 2023 [12] 2 UDenseNet ✓ ✓ ✗ 96.65

This analysis 2 EfficientNetB0 ✓ ✓ ✗ 98.78

Korkmaz 2022 [7] 3 CNN Multiscale ✓ ✓ ✓ 93.51

This analysis 3 VGG-16 ✓ ✓ ✓ 76.58

This analysis 4 EfficientNetB0 ✗ ✓ ✗ 74.55

However, in Case 4, significant discrepancies of at least 20% are evident. This
disparity can be attributed to the fact that the data augmentation in Case 4 is performed
exclusively on the training set, after its separation from the test set. As a consequence,
the test set contains images that the model has never previously encountered, which
may influence the evaluation metrics. This phenomenon suggests that by employing
data augmentation on the dataset intended for testing, the illusion could be generated
that the model has exceptional generalization ability, when in fact it may be suffering
from overfitting to specific patterns present in the training set.

Contrarily, it is found that applying data augmentation exclusively on the training
set (Case 4) results in a 4% increase in generalization ability compared to Case 1.
This supports the notion that data augmentation on the training set can have a positive
impact on the model’s ability to generalize to previously unseen data, even when faced
with a test set with unpublished images. In addition, a comparison was made between
the results obtained in this study and those reported in the literature for models with
the best accuracy values in each specific case shown in Table 3. Accuracy is the
only metric employed, since the state of the art works only report this metric. The
findings are as follows:

– Case 1. The Vision Transformer-based model proposed by Li et al. [10]
stands out, outperforming conventional Convolutional Neural Networks (CNN),
despite the class imbalance. This result suggests that, under imbalance
conditions, transformer-based architectures can offer better generalization capability
compared to conventional CNNs.

– Case 2. The EfficientNetB0 model outperforms the model of Pamungkas et al. [12]
by almost 3%, even though the model used is less complex. It is important to note
that higher accuracy does not always reflect the true generalization ability of a
model, as model complexity also plays a crucial role.

43

Assessing the Impact of Data Augmentation on Photovoltaic Module ...

Research in Computing Science 153(12), 2024ISSN 1870-4069



Table 4. Comparison of training time of each model.

Time by model (min)

Case VGG16 MobileNet ResNet DenseNet EfficientNet µ

I 15 5 9 10 8 9.4

II 235 94 146 158 128 152.2

III 37 14 23 25 20 23.8

IV 189 72 116 149 105 126.2

– Case 3. The model reported by Korkmaz et al. [7] shows exceptional performance,
reaching a value of 93.51%, significantly outperforming the best model proposed
in this study. However, a discrepancy in the reported accuracy is observed, as the
work of Li et al. [10] when replicating the model, obtained an accuracy of 85.1%
employing the Case 1 method. These discrepancies highlight the importance of
reproducibility and consistency in presenting results in the scientific literature.

– Case 4. By implementing data augmentation exclusively on the training set, a
4% increase in generalization ability is observed compared to Case 1, although
it is still not optimal classification. These results emphasize the importance
of exploring additional approaches or making adjustments to improve the
generalization ability substantially.

Additionally, Table 4 presents the time required for 10-fold cross-validation in the
training stage for each model and the four data augmentation cases. As it can be
observed, in Case 1, no model exceeded 15 minutes of training. In contrast, Case 2
showed a mean training time of 152.2 minutes, where the VGG16 model achieved a
maximum of 235 minutes, whereas the MobileNet achieved the minimum time (94
minutes). Note that Case 2 denotes the scenario with the highest training time.

It is important to note that the relationship between the number of images used
and the resulting training time is not linear. When comparing Case 1 and Case 2, in
which the number of images used differs by a factor of 12 due to increased data, the
training time increases by at least 15 times. In contrast, when Case 1 and Case 3 are
compared, where the number of images used differs by a factor of 2.3, the training
time increases by at least 2.4 times. Then, it demonstrates that a linear increase in the
number of images used does not result in a linear increase in training time. Among
all the implemented models, VGG-16 consistently exhibited the longest training times,
whereas MobileNetV2 consistently demonstrated the shortest training times.

This discrepancy can be attributed to the substantial contrast in the number
of trainable parameters. VGG-16 possesses 138.4 million parameters, whereas
MobileNetV2 possesses only 3.5 million parameters, amounting to approximately 40
times fewer parameters. In summary, it has been observed that data augmentation can
be a highly effective technique to enhance the performance of deep learning models.
For instance, in the work of Pamungkas [12], it was found that augmenting the training
and testing sets significantly improved model performance by approximately 30%,
compared to no data augmentation.
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However, it is important to note that this performance may be biased due to the
incorporation of prior knowledge (augmented data) in the testing process, which could
lead to overfitting and reduce the model’s generalization capability. Nevertheless, it is
possible to improve model performance even with data augmentation limited to the
training set, as shown by the performance improvement of the EfficientNetB0 model in
Case 4 compared to Case 1.

4 Conclusions

In this study, the analysis of the impact on the performance of several data augmentation
methodologies reported in the literature was done. Data augmentation was found to be
a valuable tool for improving the generalization capability of the model, as well as for
achieving a balance in the class distribution. Nonetheless, what was emphasized was
that the application of these techniques on both training and test datasets may generate
the illusion of an improvement in classification ability.

Crucially, this apparent improvement does not necessarily guarantee the
generalization capacity of the model facing new data. In addition, it should be noted
that the increase in the number of images used for training prolongs the time required,
although this increase does not follow a linear relationship. As a perspective for future
work, a more exhaustive exploration of models based on Transformers is contemplated,
exploring their analysis and evaluation in more detail. Additionally, exploring more
advanced data augmentation techniques, such as synthetic data generation using
Generative Adversarial Networks (GANs), is also considered.
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